UFSCar UNIVERSIDADE FEDERAL DE SÃO CARLOS

CAIXA DE AREIA DE REALIDADE AUMENTADA:

GUIA DE CONFECÇÃO E APLICAÇÕES DE ENSINO

LUANNA DE OLIVEIRA MILANTONI VINICIUS MOURA COSTA PAULO GUILHERME MOLIN

Comissão Permanente de Publicações Oficiais e Institucionais da UFSCar

Caixa de Areia de Realidade Aumentada: Guia de Confecção e Aplicações de Ensino

Luanna de Oliveira Milantoni Vinicius Moura Costa Paulo Guilherme Molin

Comissão Permanente de Publicações Oficiais e Institucionais da UFSCar

Buri 2021 © 2021 by Luanna de Oliveira Milantoni, Vinicius Moura Costa, Paulo Guilherme Molin.

Direitos dessa edição reservados à Comissão Permanente de Publicações Oficiais e Institucionais -CPOI

É proibida a reprodução total ou parcial desta obra sem a autorização expressa do Editor.

Projeto Gráfico e Editoração eletrônica: Vinicius Moura Costa Revisão Gramatical e Ortográfica: Paulo Guilherme Molin Normalização e Ficha Catalográfica: Marina P. Freitas CRB-8/6069

Dados internacionais de Catalogação-na-Publicação (CIP)

Milantoni, Luanna de Oliveira.

Caixa de areia de realidade aumentada: guia de confecção e aplicações de ensino. / Luanna de Oliveira Milantoni, Vinicius Moura Costa, Paulo Guilherme Molin. — Buri: UFSCar/CPOI, 2021.

36 p.

ISBN: 978-65-86558-42-5

1. Realidade Aumentada. 2.Caixa de Areia. 3. Novas Tecnologias. I. Título.

Reitora Ana Beatriz de Oliveira **Vice-Reitor** Maria de Jesus Dutra dos Reis

AGRADECIMENTOS

Ao professor Paulo Guilherme Molin por ter dado todo apoio e suporte para a realização deste projeto.

À Janete da Silva Moura, Juliana Bertoglia Silva, Benedito Aparecido da Costa, Renato Mariano da Silva e Fabio Matsuda, que foram essenciais para a realização deste projeto.

A todos os membros do Centro de Pesquisa e Extensão em Geotecnologias (CePE-Geo), em especial Melodie Kern e Giulio Santoro por todo auxílio e sugestões de melhoria.

À Proex e Coordenadoria dos Programas de Iniciação Científica e Tecnológica (CoPICT) por financiarem a pesquisa deste projeto.

Ao programa de pesquisa e desenvolvimento da Agência Nacional de Energia Elétrica (P&D ANEEL), pelo financiamento do projeto "Gestão Sustentável de Faixas de Servidão de Linhas de Transmissão de Energia Elétrica: P&D ISA-CTEEP", código ANEEL PD-00068-0040/2018, de onde surgiu o interesse pelo desenvolvimento desta ferramenta didática.

À CPOI pelo apoio na publicação deste projeto.

LISTA DE FIGURAS

Figura 1 – Caixa de Areia	7
Figura 2 – SandScape	8
Figura 3 – Storyteller Sandbox	9
Figura 4 – SandyStation	. 10
Figura 5 – Caixa de Areia criada pela UC Davis	. 11
Figura 6 – Caixa de Areia desenvolvida pela SEGA	. 12
Figura 7 – Caixa de Areia desenvolvida pela UFF Niterói	. 12
Figura 8 – Continuum de Paul Milgram	. 13
Figura 9 – Medidas da estrutura da Caixa de Areia	. 17
Figura 10 – Fixação das peças de madeira MDF	. 17
Figura 11 – Caixa de madeira	. 18
Figura 12 – Chapa para fixação do perfilado metálico na Caixa de madeira	. 18
Figura 13 – Resultado da montagem da estrutura da Caixa	. 19
Figura 14 – Bem-vindo ao Linux	. 20
Figura 15 – Área de trabalho do Linux Mint	. 20
Figura 16 – Seleção do idioma	. 21
Figura 17 – Seleção do layout do teclado	. 21
Figura 18 – Codecs multimídia	. 22
Figura 19 – Tipo de instalação	. 22
Figura 20 – Escolha da região	. 23
Figura 21 – Informações	. 23
Figura 22 – Etapa final da instalação do Linux	. 24
Figura 23 – Instalação concluída	. 24
Figura 24 – Linux pronto para ser utilizado	. 24
Figura 25 – Tela após comando de alinhamento do Kinect	. 26
Figura 26 – Extract Planes	. 27
Figura 27 – BoxLayout.txt	. 28
Figura 28 – Capture	. 29
Figura 29 – Caixa de Areia de Realidade Aumentada	. 30
Figura 30 – Simulação de enchente, inundação e alagamento	. 33
Figura 31 – Rompimento de barragem	. 34
Figura 32 – Desenhando relevos	. 35

SUMÁRIO

1. NOVAS TECNOLOGIAS DA CAIXA DE AREIA INTERATIVA	7
2. HISTÓRICO	8
3. CONCEITOS CHAVES	13
3.1 REALIDADE AUMENTADA	13
3.2 SENSOR KINECT	14
3.3 LINUX	14
4. MONTAGEM DA CAIXA DE AREIA DE REALIDADE AUMENTADA	15
4.1 CONFECÇÃO DA ESTRUTURA DA CAIXA DE AREIA	16
4.2 INSTALAÇÃO DO SOFTWARE	19
4.2.1 Instalando o Linux	19
4.2.2 Instalando o Driver NVIDIA	25
4.2.3 Instalando o VRUI VR	25
4.2.4 Instalando o Pacote do Kinect	25
4.2.5 Instalando o Sandbox	25
4.2.6 Configurando o Kinect	26
4.2.7 Alinhando o Kinect	26
4.2.8 Medindo a Equação do Plano Base da Caixa de Areia	27
4.2.9 Medindo a Posição das Bordas da Sandbox	28
4.2.10 Alinhando o Projetor	29
4.2.11 Calibrando o Projetor e Kinect	29
4.2.12 Iniciando a Caixa de Areia de Realidade Aumentada	31
4.2.13 Criando um Diretório	31
4.2.14 Criando um Arquivo de Configuração Para CalibrateProjector	31
4.2.15 Criando um Arquivo de Configuração Para SARndbox	31
4.2.16 Criando um Icone na Area de Trabalho	32
	32
5.1 SIMULAÇÃO DE ENCHENTE, INUNDAÇÃO E ALAGAMENTO	32
5.2 ROMPIMENTO DE BARRAGEM	33
5.3 DESENHANDO RELEVOS	34
REFERÊNCIAS	36

1 NOVAS TECNOLOGIAS DA CAIXA DE AREIA INTERATIVA

A utilização de novas tecnologias apresenta um crescente potencial no auxílio dos estudos de espaços geográficos e questões ambientais, pois torna a experiência mais atrativa, acessível, descomplicada e simples (FITZ, 2008). O seu uso permite trazer dados, imagens e informações de uma maneira mais atraente do que a forma convencional (ALVES; PAWLAS, 2016).

A Caixa de Areia Interativa, ou Caixa de Areia de Realidade Aumentada, tratase de uma caixa com areia que utiliza o sensor Kinect para produzir interações através da Realidade Aumentada. Nela, a pessoa que está interagindo é capaz de moldar formas na areia, que são identificadas automaticamente pelo sensor e exibidas pelo projetor, resultando em um modelo topográfico com cores de elevação, contornos e simulação de água, conforme exibido na Figura 1. Esta ação é repetida a cada nova alteração de relevo da areia, gerando uma interação dinâmica (CUNHA et al., 2016).

Figura 1 – Caixa de Areia.

Fonte: Autores.

Este tipo de tecnologia considera o participante como parte integrante do sistema, pois sem suas ações não são geradas respostas do programa. Tal fato pode interessar ainda mais o usuário a explorar e querer conhecer o conteúdo. Este aumento do vínculo entre máquina-usuário é considerado um ponto forte no enriquecimento da experiência dos participantes com as temáticas ambientais (TORREZAN et al., 2011).

2 HISTÓRICO

As primeiras evidências de dispositivos de Realidade Aumentada apareceram por volta de 1960, quando o pesquisador Ivan Sutherland apresentou um capacete de visão de ótica direta rasteado que possibilitava a visualização de objetos tridimensionais no ambiente real (KIRNER; KIRNER, 2011), algo semelhante aos óculos de Realidade Virtual que temos hoje em dia. Anos depois, já na década de 1980, a Força Aérea dos EUA desenvolveu um simulador de cockpit de avião, sendo este o primeiro projeto de Realidade Aumentada (KIRNER, 2008 apud KIRNER; KIRNER, 2011).

Como o interesse em Realidade Virtual e Realidade Aumentada foi crescendo, a tecnologia avançou ao decorrer dos anos, o que desencadeou a criação dos primeiros projetos de Caixa de Areia. Em 2003, pesquisadores do Massachusetts Institute of Technology Media Lab desenvolveram o SandScape (Figura 2), onde era possível fazer rapidamente a análise da arquitetura paisagística com materiais físicos contínuos, como a areia, e para isso era utilizado o Laser Scaner Minolta Vivid-900 (SAVOVA, 2016). Infelizmente por ter um valor alto, tornou-se difícil a replicação do projeto na época, sendo que atualmente este sensor não é mais produzido (SMITH, 2019). Um vídeo mostrando o produto desenvolvido pode ser encontrado na página do projeto: https://tangible.media.mit.edu/project/sandscape/.

Figura 2 – SandScape.

Fonte: WANG et al., 2003.

O desenvolvimento do tema Realidade Aumentada nas diversas universidades e centro de pesquisas no mundo estavam agitando o ramo da tecnologia. Este fato instigou o Professor Claudio Kirner, da Universidade Federal de Itajubá a coordenar o I Workshop de Realidade Aumentada no Brasil já em 2004 (KIRNER; KIRNER, 2011).

Pouco depois, a Disney Enterprise aproveitou dessa novidade tecnológica e lançou o Storyteller's Sandbox no D23 Expo 2009 (Figura 3), sendo esta uma Caixa de Areia Interativa que contava uma história temática, como o processo de nascimento de tartarugas marinhas, onde as pessoas poderiam interagir com a areia conforme fossem ouvindo a história, tornando a experiência mais imersiva (SMITH, 2019; SAVOVA, 2016). A Disney preza pela qualidade de seus produtos, então as projeções deveriam ser impecáveis e totalmente alinhadas. Para isso toda a calibração e ajustes dos multiprojetores eram feitas pelo ProCams Toolbox, desenvolvido pela equipe da empresa (MINE et al., 2012). Vídeos demonstrativos gravados no D23 Expo 2009 podem ser vistos em: https://youtu.be/lypiP5KQfXA e https://youtu.be/tjamy02uc4w.

Figura 3 – Storyteller Sandbox.

Fonte: NGUYEN, 2011.

Até então, os equipamentos desenvolvidos demandavam alto recurso financeiro, devido aos dispositivos que eram necessários. Pensando em reproduzir a Caixa de Areia Interativa, mas com equipamentos mais acessíveis, Peter Altman e Robert Eckstein, estudantes da University of West Bohemia, República Tcheca,

criaram o chamado SandyStation, a primeira Caixa de Areia Interativa utilizando o sensor Kinect da Microsoft, conforme ilustrado na Figura 4 (LISZEWSKI, 2011).

Figura 4 – SandyStation.

Fonte: SMARTMANIA, C. Z., 2011.

Um vídeo da SandyStation postado na internet inspirou Oliver Kreylos, pesquisador da University of California em Davis (UC Davis), a recriar em 2012 o projeto junto com sua equipe (SAVOVA, 2016), ilustrado pela Figura 5. Também foi utilizado o sensor Kinect, mas com uma interface mais amigável para o usuário, além de disponibilizarem toda a documentação e recursos do projeto online (SMITH, 2019). Tal projeto foi denominado SARndbox e pode ser acessado pela própria página da UC Davis: https://arsandbox.ucdavis.edu/.

Figura 5 – Caixa de Areia criada pela UC Davis.

Fonte: KREYLOS, 2020.

Por ser totalmente *open-source*, a ação dos pesquisadores da UC Davis ajudou difundir ainda mais os projetos no tema Caixa de Areia de Realidade Aumentada. Em 2014, a SEGA Corporation, desenvolvedora e publicadora de jogos eletrônicos, aproveitou da explosão da tecnologia e desenvolveu para o Japão uma máquina de fliperama voltada ao público infantil, muito semelhante aos projetos de Caixa de Areia já citados, porém além de ser projetado na areia o escoamento da água devido as alterações no relevo, também eram mostrados vegetação e a vida selvagem, como insetos (BBC, 2014). Por exemplo, no monte de areia formado na Caixa pode ser interpretado como um formigueiro, sendo projetado a interação das formigas com o ambiente ao redor, observado na Figura 6. O vídeo pode ser conferido YouTube através do link: https://youtu.be/IKR4BDuwZIU.

Figura 6 – Caixa de Areia desenvolvida pela SEGA.

Fonte: SEGA, 2014.

No Brasil os primeiros trabalhos publicados referentes a Caixa de Areia de Realidade Aumentada foram em 2016, sendo um por membros da Universidade Federal Fluminense *campus* Niterói e outro pela Universidade Tecnológica Federal do Paraná *campus* Campo Mourão. Cunha et al. (2016) criaram a Caixa de Areia (Figura 7), utilizando o material disponibilizado pela UC Davis e assim como eles também utilizaram o sensor Kinect. Kawamoto et al. (2016) também utilizaram o material da UC Davis e o sensor Kinect, mas com o intuito de criar o primeiro manual de instalação brasileiro.

Figura 7 – Caixa de Areia desenvolvida pela UFF Niterói.

Fonte: CUNHA et al., 2016.

3 CONCEITOS CHAVES

Neste tópico serão abordados conceitos importantes que auxiliarão na instalação e utilização da Caixa de Areia.

3.1. REALIDADE AUMENTADA

De acordo com CARMIGNIANI; FURHT, 2011, podemos definir a Realidade Aumentada como uma experiência vivida em tempo real em um ambiente físico que foi aprimorado ou aumentado, com a inserção de informações criadas por um computador. Porém, o termo Realidade Aumentada na verdade é uma particularidade da chamada Realidade Misturada (TORI; KIRNER, 2006). Em busca de compreender mais sobre a o Realidade Aumentada, Milgram et al. (1994) vai mais além e propõe que o ambiente físico e o virtual são extremos de um continuum, chamado de *Reality-Virtuality continuum* e ilustrado na Figura 8, sendo a Realidade Aumentada um ponto inserido neste continuum.

Figura 8 – Continuum de Paul Milgram.

Fonte: adaptado de Milgram et al. (1994).

Para as Caixas de Areias ou Sandbox, a técnica utilizada é a Realidade Aumentada, sendo a responsável por adicionar uma camada virtual ao mundo real (INSLEY, 2003), podendo para esta aplicação ser a projeção de perfis topográficos, água e vegetação, como também de formigueiros, insetos e ovos de tartaruga marinha. Veremos estes exemplos mais adiante.

A Sandbox tem um princípio básico de funcionamento, onde após o usuário interagir com a areia, o sensor identifica a alteração e envia as informações ao computador, que processa as informações e as envia para o projetor, mostrando assim o resultado da alteração. Dentre os projetos de Caixa de Areia desenvolvidos, principalmente pelas entidades educacionais, o sensor mais utilizado vem sendo o Microsoft Kinect devido ao seu custo-benefício.

3.2 SENSOR KINECT

Desenvolvido pela Microsoft, o Kinect foi lançado em 04 de novembro de 2010 com o objetivo de revolucionar os jogos de vídeo game do console XBOX 360, trazendo uma nova experiência ao usuário, já que oferecia recursos de reconhecimento de fala, gestos e face (ZHANG, 2012). Seu criador, o brasileiro Alex Kipman, que na época vivia há 14 anos nos EUA, nomeou inicialmente o Kinect de Projeto Natal, homenagem a cidade de mesmo nome no estado do Rio Grande do Norte, e este dispositivo era considerado um grande avanço quando comparado a tecnologia de captação de movimentos por joysticks do Nintendo Wii, console da empresa japonesa Nintendo (PEREIRA JUNIOR; PETRÓ, 2010).

Pouco tempo após seu lançamento, os pesquisadores e entusiastas nas mais diversas áreas notaram que a tecnologia de detecção de profundidade do Kinect poderia ser amplamente aplicada e com custo inferior às câmeras 3D tradicionais (HAN et al., 2013). A Microsoft reconheceu o alto impacto que seu dispositivo causou e gentilmente nomeou isto de Efeito Kinect. Aproveitando as mais diversas aplicabilidades que estavam sendo encontradas, a empresa ainda lançou em 1 de fevereiro de 2012 um Software Development Kit (SDK) para o Kinect, uma ferramenta compatível com o Sistema Operacional Windows que possibilitava o fácil acesso aos mais diversos recursos do Kinect (PAULA; MOREIRA; CARVALHO, 2014; ZHANG, 2012).

De forma geral, os componentes do Kinect se resumem em um sensor de profundidade, composto pelo Emissor de Laser Infravermelho e pela Câmera de infravermelho e por uma câmera colorida (HAN et al., 2013). Existe também um conjunto de microfones embutidos no aparelho e todos esses componentes possibilitam a captura do ambiente tridimensional, de ações como o movimentar do corpo e comandos de voz (FERNANDES et al, 2014; ZHANG, 2012).

3.3 LINUX

Os computadores requerem a utilização de um Sistema Operacional (SO), sendo este o responsável por fazer o controle dos recursos da máquina, como o processador, memórias e discos (MOTA FILHO, 2012). O componente principal de todo SO é o Kernel, definido como o núcleo do sistema operacional, onde suas principais funções são o gerenciamento de memória, dispositivos de entrada e saída, dispositivos, entre outros (CAMPOS, 2003; COUTINHO, 2010). A primeira versão do Kernel Linux foi disponibilizada em 17 de setembro de 1991 por Linus Torvalds e desde então vem sendo aprimorado por toda a comunidade de usuários (CAMPOS, 2003; APGAUA, 2004). O Kernel Linux, em conjunto com outras ferramentas, forma o SO de mesmo nome, *open source*, sendo disponibilizado sob Licença Pública Geral (GPL), podendo qualquer pessoa executar, estudar, modificar e redistribuir o código-fonte, sendo possível até alterar e vender este código, desde que respeite a GPL (RED HAT, 2021).

As diversas modificações que podem ser feitas e as diferentes ferramentas que podem acompanhar o Kernel, formam as diversas Distribuições do Linux, tendo cada uma a sua própria característica, como exemplo pode-se citar a Red Hat, Debian, Ubuntu, Linux Mint e várias outras (LEMOS et al., 2018).

Segundo Escola (2009), o Linux possui 3 tipos de usuários:

- Usuário comum: tem acesso restrito ao SO, podendo em princípio ter controle somente sobre seus arquivos e aplicativos. O usuário que instalou o SO na máquina, é um usuário comum, mas este pode ter permissão de executar comandos de um usuário root, apenas adicionando o comando SUDO antes do comando desejado.
- Usuário administrador (root): responsável por administrar o computador e tem pleno controle sobre o SO, com permissão de acesso total ao sistema.
- Usuário de sistema: é um usuário fictício, utilizado por programas, ou para realizar tarefas específicas para funcionamento de determinadas partes do sistema, existindo apenas para controlar softwares instalados no Linux.

4 MONTAGEM DA CAIXA DE AREIA DE REALIDADE AUMENTADA

De acordo com Kreylos (2020), para montar sua Caixa de Areia é preciso dispor dos seguintes materiais:

- Computador com placa de vídeo NVIDIA e processador Intel Core i5 ou Core i7 em velocidade de pelo menos 3 GHz, memória RAM de 4GB e 20GB de HD;
- Cabo HDMI;
- Cabo extensor para Kinect;

- Projetor com proporção 4:3 e resolução de 1024x768 pixels;
- Kinect para Xbox 1414, 1473 e Kinect para Windows;
- 1 Pen Drive;
- Software Rufus disponível em: http://rufus.ie/pt/;
- Sistema operacional Linux Mint 19.3 ("Tricia") ou superior em máquina exclusiva ou dual boot com Windows, disponível em: https://linuxmint.com/download_all.php;
- Software Augmented Reality Sandbox (Caixa de Areia de Realidade Aumentada), disponível em: <u>https://web.cs.ucdavis.edu/~okreylos/ResDev/SARndbox/;</u>
- 1 CD;
- Placa de MDF de 100cmx75cm,
- Perfilado metálico de 22mm;
- 2 junções internas para perfilado;
- 2 chapas internadas de metal;
- 12 parafusos, 12 porcas e 20 arruelas;
- Cola para madeira;
- 100 quilos de areia ou 25 quilos de serragem.

4.1 CONFECCÇÃO DA ESTRUTURA DA CAIXA DE AREIA

Recomenda-se que a estrutura da Caixa siga as medidas especificadas na Figura 9. Caso seja necessário adaptar as medidas é preciso respeitar a proporção de 4:3. Optou-se por realizar a Caixa de Areia de madeira e o suporte para o projetor e Kinect com perfilado metálico. Porém, a escolha do tipo de material a ser usado fica a critério de quem está confeccionando.

Figura 9 – Medidas da estrutura da Caixa de Areia.

Fonte: Autores.

Para a montagem da Caixa, foram utilizadas peças de madeira MDF com espessura de 15mm. Para a fixação das peças, utilizou-se cola de madeira e parafusos, assim como ilustrado na Figura 10.

Figura 10 – Fixação das peças de madeira MDF.

Fonte: Autores.

Após concluído, a primeira etapa da montagem da Caixa estava pronta. O resultado pode ser observado na Figura 11.

Figura 11 – Caixa de madeira.

Fonte: Autores.

Para confecção da estrutura para comportar o projetor e o sensor Kinect foi utilizado perfilado metálico perfurado e duas junções internas para perfilado. Para fixar as barras na Caixa de madeira, utilizou-se parafusos, porcas e arruelas. Devido a madeira ser de MDF, foi necessária uma pequena chapa no lado interno da Caixa, para que fosse possível fixar firmemente as barras na Caixa, sem danificar a madeira, conforme ilustrada na Figura 12.

Figura 12 – Chapa para fixação do perfilado metálico na Caixa de madeira.

Fonte: Autores.

Por fim, para fixar o projetor e o Kinect ao perfilado metálico, foi necessário montar uma estrutura à parte. Foram reaproveitadas peças em desuso de suporte de

TV. Este suporte foi fixado na barra utilizando-se um parafuso. Na Figura 13 é apresentado o resultado da montagem da estrutura.

Figura 13 – Resultado da montagem da estrutura da Caixa.

Fonte: Autores.

É recomendado que sejam utilizados 10 centímetros de profundidade de areia na Caixa. Neste trabalho foi utilizado pó de serragem e os resultados obtidos foram os mesmos que com areia. A vantagem do uso do pó de serragem se traduz em diminuição no peso total do sistema e consequente economia na estrutura e maior flexibilidade para transporte.

4.2 INSTALAÇÃO DO SOFTWARE

A seguir serão detalhados o passo a passo para realizar a instalação do software da Caixa de Areia.

4.2.1 Instalando o Linux

Para se fazer a instalação do Sistema Operacional necessário para a Caixa de Areia, deve-se entrar no site da Linux e realizar o download do mesmo. Feito o download, deve-se criar um Pen Drive bootável por meio do software Rufus. Neste programa deve-se selecionar em "Dispositivo" o seu pendrive e em "Seleção de Boot" a ISO baixada no site da Linux, em seguida clique em "Iniciar". Ao concluir essa etapa deve-se desligar e ligar seu computador para acessar a BIOS. Geralmente, para acessá-la, deve-se manter a tecla F2 pressionada assim que seu computador começar a ligar. Ao abrir o menu da BIOS selecione a opção referente ao Linux que aparecerá na tela.

A seguir são exibidos os passos para a instalação do Linux Mint 20 MATE. Ao iniciar o computador, uma série de opções são exibidas. Assim como ilustrado na Figura 14, deve-se selecionar "Start Linux Mint".

Figura 14 – Bem-vindo ao Linux.

Fonte: Autores.

O SO irá iniciar e será exibida a área de trabalho. Deve-se selecionar o ícone "Install Linux Mint" que está destacado em verde na Figura 15.

Figura 15 – Área de trabalho do Linux Mint.

Fonte: Autores.

Uma nova janela irá se abrir, a primeira ação a ser feita é a escolha do idioma. Assim como exibido na Figura 16, o idioma "Português do Brasil" foi selecionado.

	Instalação (as superuser)	-	• •
Bem-vindo			
Occitan Polski Portuguës do Brasil Română Sámegillii Shqip Slovenčina Slovenščina Šlůnski Suomi Svenska	Você talvez queira ler as <u>notas da versão</u> .	Sair Voltar Continuar	

Figura 16 – Seleção do idioma.

Em sequência, é necessário escolher o Layout do teclado de seu dispositivo, Figura 17. É possível também fazer a detecção automática do layout.

Instalação (a	is superuser) – 📀
Layout do teclado	
Selecione o layout de seu teclado: Norueguês Persa Polonês Português Português (Brasil) Quirguistão Romeno Russo Sinhala (fonético)	Portuguės (Brasil) Portuguės (Brasil) - Esperanto (Brasil, nativo) Portuguės (Brasil) - Portuguese (Brasil, Dvorak) Portuguės (Brasil) - Portuguės (Brasil, ThinkPad da IBM/Lenovo) Portuguės (Brasil) - Portuguės (Brasil, nativo para teclados americanos) Portuguės (Brasil) - Portuguės (Brasil, nativo) Portuguės (Brasil) - Portuguės (Brasil, sem teclas mortas)
Digite aqui para testar o seu teclado Detectar layout do teclado	Sair Voltar Continuar
	• • • •

Figura 17 – Seleção do layout do teclado.

Fonte: Autores.

Fonte: Autores.

O terceiro passo é a seleção ou não da opção de instalação de "Codecs de Multimídia", ilustrado na Figura 18.

Figura 18 – Codecs multimídia.

Fonte: Autores.

A quarta etapa consiste na escolha do tipo de instalação. Nesta etapa é possível ajustes mais avançados, como o particionamento manual do Disco de Armazenamento. Para esta instalação, como não havia nenhum outro SO instalado na máquina, optou-se por "Apagar disco e reinstalar o Linux Mint", assim como pode ser visto na Figura 19.

Figura 19 – Tipo de instalação.

Em seguida, é solicitado a escolha da região na qual está inserido. Foi selecionado São Paulo, como ilustrado na Figura 20.

Figura 20 – Escolha da região.

Por fim, informações como nome, nome do computador, nome de usuário e senha são solicitados. Os campos com as informações necessárias são exibidos abaixo na Figura 21.

3.

	Instalação (as superusei	5)		
Quem é você?				
Seu nome: Nome do seu computador:	Luanna luanna-PC	v	~	
Escolha um nome de usuário:	O nome usado quando ele co luanna	nversa com outros computadores.		
Escolha uma senha:	••••	Senha curta		
comme sua senna.	O Iniciar sessão automa	ticamente		
	Criptografar minha	para entrar a pasta pessoal		
			Voltar	Continuar
		1		
	•••••		Voltar	Continuar

Após estas etapas, o Linux iniciará a instalação e configuração do SO. Este processo pode levar alguns minutos. A Figura 22 exibe esta etapa.

Figura 22 – Etapa final da instalação do Linux.

Fonte: Autores.

Com a instalação concluída, uma janela será exibida solicitando que o usuário reinicie o sistema, ilustrado na Figura 23.

Figura 23 – Instalação concluída.

Fonte: Autores.

Após reiniciar a máquina, o Linux já está pronto para ser utilizado, como exibido na Figura 24.

Figura 24 – Linux pronto para ser utilizado.

Fonte: Autores.

4.2.2 Instalando o Driver NVIDIA

Com o Linux instalado, a próxima etapa é instalar o driver NVIDIA. Para isso abra o menu e pesquise por Gerenciador de Drivers, espere carregar, selecione a opção recomendada e realize o download. Para verificar se a instalação foi bemsucedida digite no terminal:

glxinfo | grep vendor

Caso a instalação tenha sido um sucesso o terminal responderá:

```
server glx vendor string: NVIDIA Corporation
client glx vendor string: NVIDIA Corporation
OpenGL vendor string: NVIDIA Corporation
```

4.2.3 Instando o VRUI VR

Para se instalar o VRUI VR, digite no terminal:

```
cd ~
wget http://web.cs.ucdavis.edu/~okreylos/ResDev/Vrui/Build-Ubuntu.sh
bash Build-Ubuntu.sh
```

O Linux irá pedir sua senha de usuário e perguntar se você deseja instalar os comandos, digite que sim. A instalação irá levará um tempo. Quando a instalação finalizar, automaticamente irá surgir uma janela na tela com um globo terrestre girando. Essa janela pode ser fechada.

4.2.4 Instalando o Pacote do Kinect

No terminal cole o código para realizar a instalação do pacote do Kinect:

```
cd ~/src
wget http://web.cs.ucdavis.edu/~okreylos/ResDev/Kinect/Kinect-3.10.tar.gz
tar xfz Kinect-3.10.tar.gz
cd Kinect-3.10
make
sudo make install
sudo make installudevrules
ls /usr/local/bin
```

Na lista de nomes que irá aparecer deve conter KinectUtil e RawKinectViewer.

4.2.5 Instalando o Sandbox

Para instalar o Sandbox é necessário inserir os seguintes comandos no terminal:

```
cd ~/src
wget http://web.cs.ucdavis.edu/~okreylos/ResDev/SARndbox/SARndbox-
2.8.tar.gz
tar xfz SARndbox-2.8.tar.gz
cd SARndbox-2.8
make
ls ./bin
```

4.2.6 Configurando o Kinect

Com o Kinect conectado, digite no terminal:

```
sudo /usr/local/bin/KinectUtil getCalib 0
```

Digite sua senha caso necessário.

4.2.7 Alinhando o Kinect

É necessário alinhar a câmera do Kinect para garantir que toda a superfície da Caixa seja coberta. Digite no terminal:

```
cd ~/src/SARndbox-2.8
RawKinectViewer -compress 0
```

Uma imagem semelhante a Figura 25 aparecerá na sua tela.

Fonte: Autores.

4.2.8 Medindo a Equação do Plano Base da Caixa de Areia

Para realizar esta etapa é necessário dar um zoom na primeira imagem da janela anterior, fazendo com que ela ocupe praticamente toda a tela do computador. Após, será necessário definir uma tecla que não está sendo utilizada, como por exemplo, a tecla "1". Para isto pressione a tecla 1 e, sem soltar, posicione o cursor do mouse em "Extract Planes", conforme Figura 26. Por fim, solte a tecla.

Figura 26 – Extract Planes.

Fonte: Autores.

Clique com o botão direito do mouse para aparecer o menu novamente, selecione "Average Frames" e aguarde alguns segundos. Você perceberá que as laterais da imagem se tornarão estáticas. Posicione o cursor do mouse no canto superior esquerdo e segure a tecla "1". Com esta tecla pressionada arraste o mouse até o canto inferior direito, formando um retângulo automático. Nesta parte não é necessário fazer nenhum clique com o mouse. O software não dará uma resposta após essa ação, porém, no terminal aparecerá a equação do plano.

4.2.9 Medindo a Posição das Bordas da Sandbox

Para prosseguir é preciso desmarcar a opção "Average Frames" no menu, clicando com o botão direito do mouse para aparecer o menu novamente. Feito isso, designe novamente uma nova tecla para esta etapa, como a tecla "Q" por exemplo. Pressione e segure a tecla Q e coloque o mouse sobre "Measure 3D Positions" no menu que aparecerá em sua tela. Após, solte a tecla. Clique com o botão direito, selecione novamente "Average Frames" e espere alguns segundos.

O próximo passo é posicionar o cursor nos 4 cantos da tela, tomando cuidado para não deixar posicionado nas partes "escuras" da imagem. A ordem para capturar os pontos será: canto inferior esquerdo, canto inferior direito, canto superior esquerdo e canto superior direito. Pressione a tecla designada em cada um desses 4 cantos. Copie os valores que aparecem no terminal.

Entre na pasta da SARndbox no seu computador, procure pelo arquivo BoxLayout.txt, apague os valores existentes e cole os que você obteve na etapa anterior. Troque o sinal de igual por uma vírgula, salve e feche a janela. Seu arquivo BoxLayout.txt deverá se parecer com o da Figura 27, mas com valores diferentes dependendo dos pontos selecionados.

			Box	ayout	.txt ((~/sr	/SAR	ndbo	x-2.8	/etc/	SARno	dbox	-2.8)		-	ø	8
Arquivo	Editar	Ver	Pes	quisar	Fe	rrame	entas	Doo	cume	ntos	Ajud	la					
• 6	8		¢	¢		×	6	Ô		Q	R						
BoxLa	ayout.t	xt ×															
-0.0097	9648,	-0.0	0374	665,	0.99	9994	5), •	134.	163								
		-58.2	801,				- 32.	9562	2,			-	123.6	45)			
		53.6	933,				-35.	8941	ι,			-	129.1	99)			
		-58.4	144,				49	9.103	3,			-	130.1	76)			
		55.3	725,				49.	1469	Э,			-	127.3	02))			
				-						_							

Figura 27 – BoxLayout.txt.

Fonte: Autores.

4.2.10 Alinhando o Projetor

No terminal, coloque o seguinte comando:

XBackground

Uma janela mostrando os guias de calibração irá abrir, aperte F11 para deixar em tela cheia. Após, se a janela cobrir toda a tela do computador, ela poderá ser fechada.

4.2.11 Calibrando o Projetor e Kinect

Digite no terminal o seguinte comando:

```
cd ~/src/SARndbox-2.8
./bin/CalibrateProjector -s 1024 768
```

Neste comando, os valores 1024 e 768 indicam a resolução do projetor. Uma tela vermelha irá aparecer e sumir sozinha, deixando uma tela preta com duas linhas brancas. Designe novamente uma tecla não utilizada, como a "F" por exemplo, posicione o cursor em Capture e solte, conforme Figura 28.

Tool Selection Menu Locator 🖒	
Dragger 🗘	
Navigation 🖒	
Transformer 🗘	
User Interface	
Pointer 🗘	
Utility 💠	
Capture	

Figura 28 – Capture.

Fonte: Autores.

A ferramenta "Capture" irá pedir para você novamente escolher uma tecla para fazer a captura dos pontos. Agora, será necessário usar um CD convencional, colar uma folha sulfite nele e traçar duas linhas formando uma cruz. O centro do CD deverá ser posicionado nas linhas que o software irá projetar na Caixa de Areia, use as linhas desenhadas para se guiar. Quando for projetado uma cor verde no CD deve-se apertar a tecla designada para se fazer as capturas. Deve-se repetir esse processo até que todos os pontos sejam capturados.

Nessa etapa de calibração é importante fazer algumas ressalvas: não há problema caso a cor verde projetada no CD não coincida exatamente no CD. Também é necessário variar a altura do CD, deixando mais baixo e mais alto. Caso seja utilizado outro material, e não um CD, é possível que o software não reconheça a forma. Essa etapa deve ser feita com cuidado.

Agora, a Caixa de Areia de Realidade Aumentada está configurada, calibrada e pronta para funcionar, conforme observado na Figura 29.

Figura 29 – Caixa de Areia de Realidade Aumentada.

Fonte: Autores.

4.2.12 Iniciando a Caixa de Areia de Realidade Aumentada

Para rodar a Caixa de Areia, digite no terminal:

```
cd ~/src/SARndbox-2.8
./bin/SARndbox -uhm -fpv
```

4.2.13 Criando um Diretório

Para criar o diretório digite no terminal:

```
mkdir -p ~/.config/Vrui-8.0/Applications
```

4.2.14 Criando um Arquivo de Configuração Para CalibrateProjector Insira no terminal:

xed ~/.config/Vrui-8.0/Applications/CalibrateProjector.cfg

No arquivo, cole:

```
section Vrui
   section Desktop
        section Window
            # Force the application's window to full-screen mode:
            windowFullscreen true
        endsection
        section Tools
            section DefaultTools
                # Bind a tie point capture tool to the "1" and "2" keys:
                section CalibrationTool
                    toolClass CaptureTool
                    bindings ((Mouse, 1, 2))
                endsection
            endsection
        endsection
    endsection
endsection
```

Salve e feche o editor de texto.

4.2.15 Criando um Arquivo de Configuração Para SARndbox

Digite no terminal:

xed ~/.config/Vrui-8.0/Applications/SARndbox.cfg

No arquivo, cole:

```
section Vrui
section Desktop
# Disable the screen saver:
inhibitScreenSaver true
```

```
section MouseAdapter
            # Hide the mouse cursor after 5 seconds of inactivity:
            mouseIdleTimeout 5.0
        endsection
        section Window
            # Force the application's window to full-screen mode:
            windowFullscreen true
        endsection
        section Tools
            section DefaultTools
                # Bind a global rain/dry tool to the "1" and "2" keys:
                section WaterTool
                    toolClass GlobalWaterTool
                    bindings ((Mouse, 1, 2))
                endsection
            endsection
        endsection
   endsection
endsection
```

Salve e feche o editor de texto.

4.2.16 Criando um Ícone na Área de Trabalho

A fim de facilitar a execução do software, é recomendado criar um atalho na Área de Trabalho. Para isso crie um atalho na Área de Trabalho para o arquivo de texto criado no passo anterior.

Após a criação do atalho, basta clicar com o botão direito sobre o ícone e selecionar "Abrir no Terminal".

5 APLICAÇÕES DE ENSINO

A Caixa de Areia de Realidade Aumentada é uma ferramenta muito versátil, permitindo várias possibilidades de atividades práticas. Neste tópico trazemos algumas possibilidades de aplicação da Caixa.

5.1 SIMULAÇÃO DE ENCHENTE, INUNDAÇÃO E ALAGAMENTO

Na Caixa de Areia é possível simular um fluxo intenso de água, desse modo, uma das atividades possíveis de se realizar é a simulação de enchente, inundação e alagamento. Recomenda-se que sejam moldados um rio e um "terreno irregular" para as ruas. Para deixar ainda mais didática a experiência, pode-se utilizar casas em papel para representar a zona urbana. Um exemplo desta atividade é observado na Figura 30.

Figura 30 – Simulação de enchente, inundação e alagamento.

Fonte: Autores.

5.2 ROMPIMENTO DE BARRAGEM

Um assunto bem atual para abordar com a Caixa é sobre rompimento de barragem. Assim como na atividade anterior, recomenda-se utilizar casinhas e um pedaço de papel para representar a barreira. Este papel deverá ser retirado para representar o rompimento.

Fonte: Autores.

5.3 DESENHANDO RELEVOS

Outra atividade é projetar curvas de relevo sobre a Caixa e moldar a areia de acordo com a imagem. Após, quando retornar ao software, será possível visualizar as formas de relevo coloridas. Este processo é ilustrado na Figura 32.

Fonte: Autores.

REFERÊNCIAS

APGAUA, Renata. O Linux e a perspectiva da dádiva. **Horizontes Antropológicos** [online]. v. 10, n. 21, p. 221-240, 2004. Disponível em: https://doi.org/10.1590/S0104-71832004000100010. Acesso em: 17 jun. 2021.

BBC (USA). **Sega unveils interactive sandbox arcade machine**. 2014. Disponível em: https://www.bbc.com/news/technology-29172542. Acesso em: 08 jan. 2020.

CAMPOS, Augusto César. **Introdução ao Linux**. Lavras: [S.I], 2003. 42 p. Disponível em:

http://professores.dcc.ufla.br/~monserrat/apostila_introducao_linux.pdf. Acesso em: 17 jun. 2021.

CARMIGNIANI, Julie; FURHT, Borko. Augmented Reality: An Overview. *In:* FURHT, Borko. **Handbook of Augmented Reality**. Nova York: Springer, 2011. p. 3-46. Disponível em: https://link.springer.com/chapter/10.1007/978-1-4614-0064-6_1#citeas. Acesso em: 08 jan. 2021.

COUTINHO, Bruno Cardoso. **Sistemas Operacionais**: curso técnico em informática. Colatina: IFES, 2010. 78 p. Disponível em: https://www.ufsm.br/app/uploads/sites/342/2020/04/SISTEMAS-OPERACIONAIS.pdf. Acesso em: 17 jun. 2021.

CUNHA, Carolina Daltoé da *et al.* Desenvolvimento e aplicação da SandBox no Ensino de Geografia Física. *In*: SIMPÓSIO BRASILEIRO DE EDUCAÇÃO EM SOLOS, 8., 2016, São Paulo. **Anais** [...]. São Paulo: Humanitas, 2016. p. 39-44. Disponível em:

https://www.researchgate.net/publication/324149500_Desenvolvimento_e_aplicacao _da_Sandbox_no_ensino_de_geografia_fisica. Acesso em: 08 jan. 2021.

ESCOLA, João Paulo Lemos. **Curso de Comandos Básicos do Linux com Ubuntu**. 2009. Disponível em:

http://cpscetec.com.br/adistancia/comando_basico_linux/aula8/aula8.html. Acesso em: 17 jun. 2021.

FERNANDES, Flávia Gonçalves *et al.* Realidade Virtual e Aumentada Aplicada em Reabilitação Fisioterapêutica Utilizando o Sensor Kinect e Dispositivos Móveis. *In*: CONFERÊNCIA DE ESTUDOS EM ENGENHARIA ELÉTRICA, 12., 2014, Uberlândia. **Anais** [...]. Uberlândia: Universidade Federal de Uberlândia, 2014. p. 1-6. Disponível em:

https://www.peteletricaufu.com/static/ceel/doc/artigos/artigos2014/ceel2014_artigo00 5_r01.pdf. Acesso em: 08 jan. 2021.

HAN, Jungong *et al.* Enhanced Computer Vision With Microsoft Kinect Sensor: a review. **IEEE Transactions On Cybernetics**, v. 43, n. 5, p. 1318-1334, out. 2013. Disponível em: https://ieeexplore.ieee.org/document/6547194. Acesso em: 08 jan. 2021.

INSLEY, Seth. **Augmented Reality: Merging the Virtual and the Real**, Oregon: Oregon State University, 2003. Disponível em: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.2400. Acesso em: 08 jan. 2021.

KAWAMOTO, André Luiz Satoshi *et al.* **Manual de instalação, configuração e uso da Caixa de Areia de Realidade Aumentada (SARndbox)**. 2016. Disponível em: http://repositorio.roca.utfpr.edu.br/jspui/handle/1/5908. Acesso em: 08 jan 2021.

KIRNER, Claudio, KIRNER, Tereza Gonçalves. Evolução e Tendências da Realidade Virtual e da Realidade Aumentada. *In*: RIBEIRO, Marcos Wagner, ZORZAL, Ezequiel Roberto. **Livro do pré-simpósio, XIII Symposium on Virtual and Augmented Reality.** Minas Gerais: Sociedade Brasileira de Computação, 2011, p. 10 – 25. Disponível em: http://de.ufpb.br/~labteve/publi/2011_svrps.pdf. Acesso em: 08 jan 2021.

KIRNER, Claudio; TORI, Romero. Fundamentos da RA. *In*: KIRNER, Claudio; TORI, Romero; SISCOUTO, Robson (org.). Fundamentos e Tecnologia da Realidade Virtual e Aumentada. Belém: SVR, 2006. p. 22-38. Disponível em: https://www.researchgate.net/publication/216813361_Fundamentos_de_Realidade_ Aumentada. Acesso em: 08 jan. 2021.

KREYLOS, Oliver. Augmented Reality Sandbox. 2020. Disponível em: https://web.cs.ucdavis.edu/~okreylos/ResDev/SARndbox/. Acesso em: 08 jan. 2020.

LEMOS, Aline Dayany de *et al.* **Linux**. Anápolis: Unievangélica, 2018. 59 p. Disponível em: http://45.4.96.19/handle/aee/1138?mode=simple. Acesso em: 17 jun. 2021.

LISZEWSKI, Andrew. **Kinect Powered Sandbox Turns Hills and Valleys Into a Living Ecosystem**. 2011. Disponível em: https://gizmodo.com/kinect-poweredsandbox-turns-hills-and-valleys-into-a-I-5863801. Acesso em: 08 jan. 2021.

MILGRAM, Paul *et al.* Augmented reality: a class of displays on the reality-virtuality continuum. **Telemanipulator And Telepresence Technologies**, v. 2351, n. 1, p. 282-292, 21 dez. 1994. Disponível em:

https://www.researchgate.net/publication/228537162_Augmented_reality_A_class_of __displays_on_the_reality-virtuality_continuum. Acesso em: 08 jan. 2021.

MINE, Mark *et al.* Projection-Based Augmented Reality in Disney Theme Parks. **Computer**, [S.L.], v. 45, n.7, p. 42 – 50, jun. 2012. Disponível em: https://www.researchgate.net/publication/235961176_Projection-Based_Augmented_Reality_in_Disney_Theme_Parks. Acesso em: 08 jan 2021.

MOTA FILHO, João Eriberto. **Descobrindo o Linux**: entenda o sistema operacional gnu/linux. 3. ed. São Paulo: Novatec, 2012.

PAULA, Felipe José Teixeira de; MOREIRA, Wiliam de Carvalho; CARVALHO, Marcos Alberto de. Interface Natural Utilizando o Microsoft Kinect. **Revista Eletrônica Científica de Ciência da Computação**, v. 9, n. 1, p. 1-4, nov. 2014. Anual. Disponível em: http://revistas.unifenas.br/index.php/RE3C/article/view/73/29. Acesso em: 08 jan. 2021.

PEREIRA JUNIOR, Alvaro; PETRÓ, Gustavo. **Conheça o brasileiro que criou o videogame que se joga sem joystick**. 2010. Disponível em:

http://g1.globo.com/tecnologia/noticia/2010/06/conheca-o-brasileiro-que-criou-o-videogame-que-se-joga-sem-

joystick.html#:~:text=Kinect%2C%20desenvolvido%20por%20Alex%20Kipman,nome %20da%20cidade%20de%20Natal.&text=Curitibano%2C%20ele%20vive%20h%C3 %A1%2014,transformar%20no%20Kinect%3A%20Projeto%20Natal.). Acesso em: 08 jan. 2021.

RED HAT. **Sistema Operacional Linux**. 2021. Disponível em: https://www.redhat.com/pt-br/topics/linux/what-is-linux. Acesso em: 17 jun. 2021.

SAVOVA, Denitsa. AR sandbox in educational programs for disaster response. INTERNATIONAL CONFERENCE ON CARTOGRAPHY AND GIS PROCEEDINGS, 6., 2016, Bulgaria. **Anais** [...]. Bulgaria, 2016. v.1-2, p. 847-858, jun. 2016. Disponível em:

https://www.researchgate.net/publication/309772611_6th_International_Conference_ on_Cartography_and_GIS. Acesso em: 3 jan. 2021.

SMITH, Destini. **Incorporating the Augmented Reality Sandbox**. 2019. Disponível em: https://www.destinismith.com/wp-content/uploads/2019/05/smith_whitepaper.pdf. Acesso em: 08 jan 2021.

WANG, Yao *et al.* **SandScape**. 2003. Disponível em: https://tangible.media.mit.edu/project/sandscape/. Acesso em: 08 jan. 2021.

ZHANG, Zhengyou. Microsoft Kinect Sensor and Its Effect. **IEEE Multimedia**, v. 19, n. 2, p. 4-10, fev. 2012. Disponível em:

https://www.researchgate.net/publication/254058710_Microsoft_Kinect_Sensor_and_ Its_Effect. Acesso em: 08 jan. 2021.